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Abstract
We construct a new integrable system on the sphere S2 with an additional
integral of fourth order in the momenta using standard machinery of the
reflection equation theory. At the special values of parameters, this system
coincides with the Kowalevski–Goryachev–Chaplygin system.

PACS number: 02.30.Ik

1. Introduction

The description of all the natural Hamiltonian systems on closed surfaces admitting integrals
polynomial in the momenta is a classical problem [1]. According to Maupertuis’s principle,
an integrable natural Hamiltonian system immediately gives a family of integrable geodesics
[2]. If the integral of the system is polynomial in momenta, the integrals of the geodesic are
also polynomial of the same degree.

For the natural Hamiltonian systems on closed surfaces with polynomial in momenta
integrals of degree 1 or 2, there exists a complete description and classification [3]. According
to [4], a geodesic on surfaces of genus greater than two cannot admit a nontrivial integral
polynomial in the momenta. Then, an orientable surface admitting such geodesics must be
the sphere or the torus.

The motion on a sphere is also related to other different physical systems [5, 6]. Thus,
investigation of integrable natural systems on the sphere with nontrivial integrals polynomial
in the momenta is an interesting mathematical and physical problem.

There are two families of natural Hamiltonian systems on a sphere with a cubic additional
integral of motion. The systems from these families are closely related with the spherical top
[7] and with the Goryachev–Chaplygin top [8].

The Kowalevski top is an example of a conservative system on the sphere which possesses
an integral of degree four in the momenta [9]. Later Goryachev [10] and Chaplygin [11] found
conservative systems on the sphere, which are generalizations of the Kowalevski system.
Recently, these results were extended in [12].

The aim of this paper is to consider a new integrable system on the sphere possessing
integrals of second and fourth order in the momenta using the reflection equation theory [13].
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2. The Kowalevski–Goryachev–Chaplygin system

Let us briefly recall the construction of the Lax matrices in the framework of the reflection
equation theory. Let 2 × 2 matrix T(λ) defines the representation of the Sklyanin algebra on
the space M { 1

T (λ),
2
T (ν)

} = [
r(λ − ν),

1
T (λ)

2
T (ν)

]
. (2.1)

Here, r is a classical r-matrix and
1
T (λ) = T (λ) ⊗ Id,

2
T (ν) = Id ⊗ T (ν).

One of the main properties of the Sklyanin algebra is that for any non-dynamical matrices
K and for some special dynamical matrices K coefficients of the trace of the Lax matrix
L(λ) = KT (λ) give rise to the commutative subalgebra in C(M)

{trKT (λ), trKT (µ)} = 0, (2.2)

(see [17] and references within). Thus, coefficients of polynomial tr L(λ) may be interpreted
as integrals of motion for an integrable system on the phase space M.

According to [13], if K±(λ) are solutions of the reflection equation{ 1
K(λ),

2
K(ν)

} = [
r(λ − ν),

1
K(λ)

2
K(ν)

]
+

1
K(λ)r(λ + ν)

2
K(ν) − 2

K(ν)r(λ + ν)
1
K(λ),

then coefficients of the trace of the Lax matrix

L(λ) = K−(λ)T (λ − ρ)K+(λ)

(
0 1

−1 0

)
T t (−λ − ρ)

(
0 1

−1 0

)
, (2.3)

give rise to another commutative subalgebra in C(M)

{tr L(λ), tr L(ν)} = 0. (2.4)

In (2.3), the superscript t stands for matrix transposition, matrix T (λ) satisfies the Sklyanin
algebra (2.1) and commutes with K(λ).

It is easy to see that the key ingredient of the proposed scheme is the matrix T (λ), which
defines three Lax matrices T (λ), L(λ) and L(λ) for three different integrable systems on the
common phase space M [17].

As an example let us consider the Kowalewski–Chaplygin–Goryaschev system on the
sphere S2 = {x ∈ R

3, |x| = a}. Entries of the vector x and angular momentum vector
J = p × x are coordinates on the phase space T ∗S2 with the following Poisson brackets:

{Ji, Jj } = εijkJk, {Ji, xj } = εijkxk, {xi, xj } = 0, (2.5)

where εijk is the totally skew-symmetric tensor. The Casimir functions of the brackets (2.5)

A =
3∑

i=1

x2
i = a2, B =

3∑
i=1

xiJi = 0 (2.6)

are in the involution with any function on T ∗S2. The phase space T ∗S2 is four-dimensional
symplectic manifold. So, for the Liouville integrability of the corresponding equations of
motion it is enough to find two functionally independent integrals of motion.

The Hamilton function for the Kowalewski–Chaplygin–Goryaschev system is equal to

H = J 2
1 + J 2

2 + 2J 2
3 + ρJ3 + bx1 + c

(
x2

1 − x2
2

)
+

δ

x2
3

, ρ, b, c, δ ∈ R. (2.7)

The corresponding additional integral of motion are fourth-order polynomial in the
momenta [9–11].

The 2 × 2 Lax matrix (2.3) for this system was constructed in [14, 15], whereas the
corresponding separation of variables is discussed in [16]. The starting point is the Lax matrix
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for the symmetric Neumann system

T (λ) =
(

λ2 − 2J3λ − J 2
1 − J 2

2 − δ

x2
3

λ(x1 + ix2) − x3(J1 + iJ2)

λ(x1 − ix2) − x3(J1 − iJ2) x2
3

)
, (2.8)

which defines representation of the Sklyanin algebra (2.1) on T ∗S2, associated with the
standard rational r-matrix

r(λ − ν) = i

λ − ν
�, � =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

If we substitute matrix T (λ) (2.8) and two constant solutions of the reflection equations

K+ =
(

b1λ + b0 λ

0 −b1λ + b0

)
, K− =

(
d1λ + d0 0

λ −d1λ + d0

)
(2.9)

into definition (2.3), one gets the Lax matrix L(λ) for the Kowalevsky–Goryachev–Chaplygin
gyrostat. In this case, the trace of the Lax matrix L(λ) (2.3)

tr L(λ) = λ6 − 2H̃λ4 + K̃λ2 + 2b0d0(Aρ2 − δ)

is a generating function of the integrals of motion H̃ and K̃ on T ∗S2, which are in the involution
{H̃ , K̃} = 0 according to (2.4).

After a suitable canonical transformation of variables and exchange of parameters the
Hamilton function

H̃ = J 2
1 + J 2

2 + 2J 2
3 + 2ρJ3 + ρ2 − b1d1a − i(b0 + d0 − (b1 + d1)(2J3 + ρ))x1

− (b0 − d0 − (b1 − d1)(2J3 + ρ))x2 + (i(b1 + d1)J1 + (b1 − d1)J2)x3 +
δ

x2
3

coincides with the original Hamilton function H (2.7), see [16] for details.
In the next section, we consider the generalization of the matrix T (λ) (2.8) in order to

construct a new integrable system.

3. Deformation of the Kowalevski system

Let us consider the deformation of the matrix T (λ) (2.8) proposed in [8]. It is the Lax matrix
for the generalized Lagrange system

Tα(λ) =
(

A B

B∗ D

)
(λ),

where

A(λ) = λ2 − 2λαJ3 + (α2 − f (x3))J
2
3 − J 2

1 − J 2
2 − g(x3),

B(λ) = (x1 + ix2)m(x3)λ + J3(x1 + ix2)�(x3) + (J1 + iJ2)n(x3), (3.1)

D(λ) = −n(x3)
2.

Here, α ∈ R and f, g,m, n and � are some functions of x3 and of the single nontrivial Casimir
a =

√
x2

1 + x2
2 + x2

3 (2.6).
According to [8], at the special values of α, f, g,m, n and � matrix Tα(λ) satisfies

deformations of the Sklyanin brackets (2.1), which inherit the property (2.2). In these cases,
matrix Tα defines new Lax matrices Lα(λ) = KTα(λ) for five integrable systems on T ∗S2

with additional cubic integrals of motion.
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In this paper, the same matrix Tα(λ) will be used in the machinery of the reflection
equation theory. Substituting Tα(λ) (3.1) into the generic definition (2.3) one gets a 2 × 2
matrix Lα(λ) with the following trace:

tr Lα(λ) = −λ6 + 2Hαλ4 + Kαλ2 + 2Fα. (3.2)

If this matrix Lα(λ) inherits the property (2.4) then it is a Lax matrix for some new integrable
system with integrals of motion Hα,Kα and Fα (3.2) in the involution.

In the generic case, equation (2.4) gives rise to a system of equations on α and f, g,m, n, �.
Let us solve these equation in the simplest case. If d1 = b1, d0 = b0 and ρ = 0 then

Hα = J 2
1 + J 2

2 + (f + α2)J 2
3 − 2b0x1m + 2b1(nJ1 + (� + 2mα)x1J3) + b2

1

(
m2

(
a2 − x2

3

)
+ n2

)
,

Kα = (
J 2

1 + J 2
2 + (f − α2)J 2

3 + g + 2b1(x1J3� + nJ1)
)2

+ 8αb1b0n
2J3

+ 2b2
1

(
J 2

3 (n2(f − α2) − (
a2 − x2

3

)
�2) − 2�n(x1J1 − x2J2)J3 +

(
g + 2J 2

2

)
n2)

+ 4b0
(
x1(2α� − (f − α2)m)J 2

3 + 2αnJ1J3 − x1m
(
g + J 2

1 + J 2
2

))
+ 2b2

0

(
m2

(
a2 − x2

3

)2 − n2
)

Fα = b2
0

(
(α2 − f )n2 − 2x3�n +

(
a2 − x2

3

)
�2

)
J 2

3 − b2
0n

2g.

(3.3)

Here, we omit the dependence of x3 in f, g,m, n and � for brevity.
Functions Hα, Fα are the second-order polynomials in the momenta whereas Kα is a

quartic polynomial. Moreover, it is easy to see that function Fα depends on variables x3 and
J3 only. So, if we want to consider integrable systems different from the generalized Lagrange
system we have to put Fα = const. It leads to the following expressions of the functions f (x3)

and g(x3):

f (x3) = α2 − 2�(x3)x3

n(x3)
+

�(x3)
2
(
a2 − x2

3

)
n(x3)2

, g(x3) = d

n(x3)2
, (3.4)

where d ∈ R.

Theorem 1. If f (x3) and g(x3) are given by (3.4) then function Fα in (3.2), (3.3) is a constant

Fα = −b2
0d,

while two remaining functions Hα and Kα on T ∗S2 are in the involution

{Hα,Kα} = 0 (3.5)

with respect to the brackets (2.5) if and only if

n(x3, a) = c1 sin

α arctan

 x3√
a2 − x2

3

 + c2 cos

α arctan

 x3√
a2 − x2

3

 . (3.6)

Here, α, c1, c2 are arbitrary parameters and all the other functions in (3.1), (3.3) are equal to

α = 0, m = 0, � = n

√
x2

3 − a2 − x3
(

ln
(
x3 +

√
x2

3 − a2
)

+ c3
)

(
x2

3 − a2
)(

ln
(
x3 +

√
x2

3 − a2
)

+ c3
) ,

α �= 0, m = −n′

α
, � = (α2n − x3n

′)n(
x2

3 − a2
)
n′ ,

(3.7)

where n′ = ∂n(x3,a)

∂x3
.
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Proof. Insert integrals Hα and Ka (3.3) into equation (3.5), which has to be satisfied identically
with respect to three independent variables J1,2 and x1. Two dependent variables J3 and x2

have to be removed by using the Casimir functions A and B.
At α �= 0, this gives a system of algebraic equations for �,m and one differential equation

for n(x3), which should be solved. Substituting solutions (3.7) of the algebraic equations into
the differential equation for n(x3) one gets(

x2
3 − a2

)
n′′(x3) + x3n

′(x3) − α2n(x3) = 0.

The generic solution of this equation is given by (3.6).
At α = 0, one gets a system of algebraic equations for m, n and one differential equation

for �. The generic solutions of these equations are given by (3.6), (3.7).
So, two nontrivial functions Hα and Kα are in the involution on the phase space T ∗S2.

Moreover, direct calculation yields that they are functionally independent functions on T ∗S2.
It means that these functions Hα and Kα define an integrable system on the sphere with a
quartic in the momenta integral of motion.

If we consider more generic solutions (2.9) of the reflection equations, which depend on
four parameters, one gets the same integrals of motion up to rescaling of x and rotations

x → bUx, J → UJ, U =
1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 , (3.8)

where b and φ are the suitable parameters, see [18] for details.
Up to such transformations integrals of motion Hα and Kα depend on five parameters

α, b0, b1, c1/c2 and d. In [12], another two-parametric family of integrable systems on the
sphere with fourth-order integral of motion was defined in implicit form using Lagrangian
variables. At present, we do not know whether our system overlaps with this family of systems.

At ρ �= 0, in (2.3), one gets some gyroscopic deformation of the proposed system (3.3).
This deformation will be studied in the forthcoming publications.

�

3.1. Special cases

In conclusion, let us show some special forms of the Hamiltonian (3.3) in explicit form.
At α = 0, the Hamiltonian reads

H0 = J 2
1 + J 2

2 +

 x2
3

x2
3 − a2

− 1(
ln

(
x3 +

√
x2

3 − a2
)

+ c3
)2

 J 2
3

+ 2b1c2

J1 −
(

ln
(
x3 +

√
x2

3 − a2
)

+ c3
)
x3 −

√
x2

3 − a2(
x2

3 − a2
)(

ln
(
x3 +

√
x2

3 − a2
)

+ c3
) x1J3

 . (3.9)

It defines a new integrable system on the sphere, which depend on two parameters b1c2 and
c3 only.

If α = 1 and α = 2, one gets

n = c1x3 + c2

√
a2 − x2

3 and n(x3) = c1x3

√
a2 − x2

3 + c2
(
a2 − 2x2

3

)
,

respectively. Here, we multiply function n (3.6) on aα because it is defined up to multiplication
on the constant.
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Even in these particular cases, the corresponding Hamiltonian Hα (3.3) remains a huge
function. We will present it imposing some additional restrictions only.

At α = 1 and c2 = 0, the Hamiltonian (3.3) is equal to

H1 = J 2
1 + J 2

2 + 2J 2
3 + 2b1c1(J1x3 − 2J3x1) + 2b0c1x1 +

d

c2
1x

2
3

− b2
1c

2
1a

2. (3.10)

After canonical transformation

J1 → J1 − c1b1x3, J2 → J2, J3 → J3 + c1b1x1, xk → xk

this Hamiltonian H1 (3.10) reads

H1 = J 2
1 + J 2

2 + 2J 2
3 + 2c1b0x1 + c2

1b
2
1

(
x2

1 − x2
2

)
+

d

c2
1x

2
3

. (3.11)

It is the Hamilton function for the Kowalewski–Chaplygin–Goryaschev top (2.7).
At α = 1 and c1 = 0, the corresponding Hamilton function (3.3) is equal to

H̃ 1 = J 2
1 + J 2

2 +
2x4

3 − a4

x2
3

(
x2

3 − a2
)J 2

3 + 2c2b0
x1x3√
x2

3 − a2
+

d

c2
2

(
x2

3 − a2
)

+ 2c2b1

√
x2

3 − a2J1 − 2x2
3 + a2

x3

√
x2

3 − a2
x1J3

 − b2
1c

2
2a

2. (3.12)

At α = 2 and c1 = 0, it has the form

H̃ 2 = J 2
1 + J 2

2 +

(
5 +

a2

x2
3

)
J 2

3 − 4b0c2x3x1 +
d

c2
2

(
2x2

3 − a2
)2

− 2c2b1

((
2x2

3 − a2
)
J1 − 6x2

3 + a2

x3
x1J3

)
+ b2

1c
2
2a

4. (3.13)

The Hamilton functions H1, H̃ 1 and H̃ 2 define particular integrable systems on the sphere,
which depend on three parameters only.

4. Summary

Using the Lax matrix for the generalized Lagrange system and the standard construction of the
commutative subalgebras from the reflection equation theory, we construct a new integrable
system on the sphere. The corresponding integrals of motion are given by (3.3); they are
second- and fourth-order polynomials in the momenta.

These integrals depend on five parameters α, b0, b1, c1/c2 and d up to canonical
transformations. For the special values of parameters, we recover the Kowalevski–Goryachev–
Chaplygin system.
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